
Software Tools for Handling Magnetically

Collected Ultra-thin Sections for Microscopy

Student:
Jelena Banjac

Data Science, EPFL, Switzerland

Professor:
Martin Jaggi

Machine Learning and Optimization lab (MLO)

Supervisor:
Thomas Templier

Center for Interdisciplinary Electron Microscopy (CIME)

June 2019

Contents

1 Abstract 2

2 Introduction 3

3 Data Exploration 5
3.1 Datasets . 6
3.2 Classes . 7

4 Models and Methods 9
4.1 Pipeline . 9

4.1.1 Trimming Detectron Model 9
4.1.2 Artificial Patch Generator 10
4.1.3 Training . 11
4.1.4 Inference . 12
4.1.5 Wafer Merge . 13

4.2 Software Tools . 17
4.3 Details and Specifications . 18

4.3.1 Hardware . 18
4.3.2 Software . 18

5 Results 19
5.1 Patch Size . 19
5.2 Number of Iterations . 19
5.3 Number of Initial Templates . 20
5.4 Adding New Class . 21
5.5 New Image Channel . 22
5.6 Parallel Training and Master Model 22
5.7 Combination of Predictions on Several Patch Sizes 24
5.8 Overlap . 25

6 Discussion 26

7 Summary 27

8 Acknowledgements 28

1

Chapter 1

Abstract

This report presents the software tools that will be available online to help
users to accurately segment ultra-thin sections of brain tissue in a large im-
age to determine section’s coordinates. In order to predict these coordinates,
the goal was to use state-of-art object instance segmentation framework called
Masked Region-based Convolutional Neural Network (Masked R-CNN) on the
dataset containing sections of brain tissue in the light microscopy images. The
predicted coordinates of the sections will later be used for automated image
acquisition in high resolution electron microscope. We will demonstrate that
Masked R-CNN can be used to perform highly effective and efficient automatic
segmentation of microscopy images containing the sections. The machine learn-
ing pipeline used will be explained in detail. In addition, we will show the results
of how different parameters and settings of this pipeline were changing the per-
formance. This semester project was done in collaboration with the Center for
Interdisciplinary Electron Microscopy (CIME) lab and Machine Learning and
Optimization (MLO) lab at EPFL.

Keywords: Mask R-CNN, ML Pipeline, brain tissue, section segmentation,
electron microscopy

2

Chapter 2

Introduction

There is a field of neuroscience that aims to discover how neurons in the
brain are wired together. In order to do that, electron microscopes are used
to observe a small volume of brain tissue. To deal with this challenge, Thomas
Templier, the scientist from CIME lab, uses the techniques to make thousands of
ultra-thin cuts of tissue blocks that are united with the block of resin containing
superparamagnetic nanoparticles. These fine cuts of the brain are collected on
a surface called silicon wafer, see Fig. 2.1.

Figure 2.1: Slices of block containing brain tissue and magnet displayed on a
silicon wafer

Accurate detection and segmentation of brain sections that can be observed
with light microscopy play an important role for further brain section analysis.
Using electron microscope imagery, a very high-resolution image of each of the
sections will be acquired. In order to do that, the electron microscope needs to
know the exact coordinates of the brain section. The objective of this project

3

was therefore to segment and detect each of these sections precisely and provide
the tools that will be easy to use for users in the field. This project is a natural
continuation of the project done during the Machine Learning course [4]. It
implements some of the previous suggestions for improvements. This time, it
is using Mask-RCNN framework developed by Facebook [4]. It was mostly
concentrated to find the model that has the highest and correct predictions
score. In the end, it makes tools that are more easy to use and are accessible
from a user side.

In Chapter 3 we explore input data and define classes that will be used in the
machine learning pipeline. Also, we mention potential problems when detecting
these classes.

In Chapter 4 we explain the machine learning pipeline in detail. We mention
how the software tools are used. We also quickly mention the hardware and
software details and specifications.

In Chapter 5 we discuss in detail the outcome of some of the important
pipeline settings, providing the results and short explanation.

In Chapter 6 we mention some of the main conclusions of the project as well
as fields of improvement.

In Chapter 7 we do a quick summary of the project development process.

4

Chapter 3

Data Exploration

For each silicon wafer, user provides two images and the initial template.
The first image is the original image of the silicon wafer containing hundreds
or thousands of sections with thickness around 50 nm. Each section consists
of a part containing the brain tissue and another part which contains magnetic
material. See Fig. 3.1.

Figure 3.1: Input to the machine learning pipeline

In the magnetic material, there is a cloud of particles that is used to recognize
and order each section by the order it was cut. Due to magnetic properties and
present magnetic field during the section collection, the sections on the silicon
wafer never overlap. Therefore, the second image is the fluorescent image of the
silicon wafer containing information that we can use to locate the magnetic part
of the section. See Fig. 3.1.

The initial template is a labelme [12] JSON file that usually contains five
manually labeled sections and one background label (background), see Fig. 3.1.

5

Each section is labeled with three classes, tissue (b1), magnet (m1), and envelope
(e1), see Fig. 3.2. The envelope is a label that includes the whole section as
well as the small dummy part. This dummy part is not relevant to extract. It
is there to help during the slicing of the sections, but also during the artificial
patch generator that will be explained in Section 4.1.2.

Figure 3.2: Labeling classes

3.1 Datasets

The data used for this project were images of four different silicon wafers.
The Table 3.1 shows the total number of sections on each wafer:

6

Wafer
Name

Number of
Sections

Mean
area

tissue

Mean
area

magnet

Mean
distance
tissue

-magnet

Min
distance
tissue

Min
distance
magnet Overlap

Distance
inside

contour
Wafer 17 496 2065 2108 31 35 55 122 76
Wafer 16 433 2032 2124 31 33 42 121 76
Wafer 1 514 6740 5548 52 125 114 218 142
Wafer 2 503 4443 4329 45 102 104 185 113

Table 3.1: Table of wafer names and the number of sections it contains

These silicon wafer images have some properties that they share. First, the
sections on one silicon wafer are very similar (e.g. similar section area size,
distance between tissue centroid and magnet centroid, etc.). Second, sections
are placed randomly onto the silicon wafer. Third, sections do not overlap.
Fourth, sections are placed on the light background. Since this amount of
images alone is not sufficient for the training, we will be generating artificial
patches of different sizes using the information from these wafers.

3.2 Classes

The classes we have are: tissue, magnet, background. The tissue and magnet
class are visually very similar. It can get hard to differentiate the magnetic
parts from those containing the brain sections. For that we use the fluorescent
images.

The potential problems we can have when detecting these classes are:

– Sections on one silicon wafer can look very different. Some of them can be
darker than other ones due to the thickness of the section, see Fig.3.3a.

– Sometimes black bands can appear on the silicon wafer. They originate
from the microscope’s photography technique used, see Fig.3.3b.

– Magnet and tissue have very similar properties, see Fig.3.3c.

– Some sections can be slightly ripped, see Fig.3.3d. The sections were
not ripped during the collection, but during subsequent handling (human
mistake during microscopy).

7

(a) Example of light (thin) and dark
(thick) sections on the silicon wafer (im-
age taken from Wafer 17)

(b) Example of black bands (image taken
from Wafer 1)

(c) Example of similar looking brain and
magnet part on the section (image taken
from Wafer 2)

(d) Example of several ripped sections
(image taken from Wafer 16)

Figure 3.3: Potential problems when detecting sections on the wafer

8

Chapter 4

Models and Methods

4.1 Pipeline

The task of the machine learning pipeline is to generate the list of the best
section coordinates. Therefore, the count of detected sections as well as correct-
ness of the final result are observed. The general workflow can be seen on Fig.
4.1.

Figure 4.1: General workflow

4.1.1 Trimming Detectron Model

Since transfer learning is particularly useful for rapid progress and improved
performance, we will use pre-trained models from Detectron [7]. Detectron is
Facebook AI Research’s software system that implements state-of-the-art ob-
ject detection algorithms, including Mask R-CNN. The goal of Detectron is to
provide a flexible codebase to support rapid implementation and evaluation of
object detection research. In the Detectron github repository they provide a
large set of trained models available for download1. Detectron uses the back-

1https://github.com/facebookresearch/Detectron/blob/master/MODEL ZOO.md

9

bone models pretrained on ImageNet2 and models are trained on the COCO
dataset3. The Mask R-CNN github repository also provides the set of base-
lines4 which are trained using the same setup as Detectron. For this project,
the pre-trained model with backbone X-101-32x8d-FPN is used.

After the pre-trained model is downloaded, the first step of the machine
learning pipeline has the goal to finetune Detectron weights on custom datasets,
as described in the Mask R-CNN repository5. Since the last layers of this pre-
trained model have classes that are different (e.g. cat, dog, etc.) from the
classes we have in our dataset (tissue, magnet), we should not load these weights.
For this we create the script called trim detectron model.py to remove keys
corresponding to the last layer. Trimmed model is stored and ready to be used
as a starting point in the Mask R-CNN training on our dataset.

4.1.2 Artificial Patch Generator

The goal of artificial patch generator is to create a high amount of images
of different sizes that will be used in the training, see Fig.4.2. These images
are created from the ML pipeline input data, see Fig.3.1. To make use of both
input images we have, we combine them into 3-channel images. The first channel
contains the original image; the second channel contains fluorescent image; and
the third channel is empty.

For example, let’s say that user annotated five sections and one background
in the input template file. The artificial patch generator will use the background
information to create the background of the patch. Also, it will use the infor-
mation of five previously annotated different sections to generate new ones by
rotating known ones and randomly throwing them on the patch background.
This way of augmenting data is the reason why it is important to initially an-
notate as many different looking sections as possible.

With each new section on the patch, the annotation dictionary was filled
in with the corresponding annotations. The set of transformations used on the
section was the same for the contour points annotating the tissue and magnet
parts. The annotation dictionary will be stored in a JSON file next to the
directory with images. The structure of this annotation file is the same as the
those used for the training on the COCO dataset6. Each patch has a unique
set of annotations (contour points). Number of categories for each annotation
we had is 3 (background=0, tissue=1, magnet=2). The script that performs
artificial patch generator is called artificial patch generator.py. Some of the
script input parameters that are used are specifying how data will be generated,
e.g. number of patches to generate, number of angles to rotate the artificial
patches, etc.

2http://www.image-net.org/
3http://cocodataset.org/#home
4https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/MODEL ZOO.md
5https://github.com/facebookresearch/maskrcnn-benchmark#finetuning-from-detectron-

weights-on-custom-datasets
6http://www.immersivelimit.com/tutorials/create-coco-annotations-from-scratch/#coco-

dataset-format

10

Figure 4.2: Different patch sizes

The output of this routine are generated train and validation sets as well as
corresponding annotation files.

The general idea of artificial patch generation can be seen in Fig. 4.3.

Figure 4.3: Idea of data augmentation [4]

What we are trying to do here is in fact to teach our neural network to be
invariant, i.e. to recognize the features, regardless of the conditions that it is
presented in. This process consists of using an image in the dataset, on which
the model will theoretically have little difficulty to learn.

4.1.3 Training

The implementation of the project relies on existing framework Mask-RCNN
developed by Facebook AI [6]. This framework is based on the open-source li-
braries PyTorch [9], Torchvision [11], and cocoapi [3]. Mask-RCNN [8] is flexible

11

and general framework for object instance segmentation. It relies on region pro-
posals which are generated via a region proposal network (RPN). Mask R-CNN,
extends Faster R-CNN [10] by adding a branch for predicting segmentation
masks on each Region of Interest (RoI), in parallel with the existing branch for
classification and bounding box regression, see Fig.4.4. Therefore, mask and
class predictions are independent. Masks are covering the parts of the brain or
magnet and class predicts if it is a brain or magnet. More information about
details of implementation can be found in their paper [8].

Figure 4.4: The Mask R-CNN framework for instance segmentation [8]

For the Mask-RCNN settings we used backbone R-101-FPN. For bounding
boxes we use feature extractor called FPN2MLPFeatureExtractor and for masks
we use MaskRCNNFPNFeatureExtractor.

For the training, we generated around 700 artificial patches, and for vali-
dation we created around 200 images. Also, we specified the anchor size to be
in range from 4 to 64 when having smaller section sizes (like Wafer 17 and 16)
and in range from 16 to 256 when having bigger section sizes. In case we were
training all wafer images in parallel, this anchor size was changed accordingly
to go from 8 to 128.

Mask R-CNN training is called with the following command:

python -m torch.distributed.launch --nproc_per_node=$NGPUS

tools/train_net.py

--config -file=/path/to/e2e_mask_rcnn_X_101_32x8d_FPN_1x.yaml

4.1.4 Inference

Inference is the part of the machine learning pipeline that is in charge of
performing prediction on a original-size wafer image. In order to do that, the
original image is cut into several subimages usually with the same dimensions as
the patch dimensions used in the artificial patch generator. Then, on each of the
subimages, the prediction is performed using the predictor class, implemented
in predictor.py. The result of the prediction is the list of contours and its

12

labels (tissue or magnet) which we call candidates. The candidates will be used
in the next step of the pipeline in order to merge the prediction results on the
full wafer. The inference is implemented in the script called inference.py.

4.1.5 Wafer Merge

The wafer merge represents the last step of the machine learning pipeline.
The main goal of this step is to find the best representatives of the sections. To
achieve this, several steps are performed. First we need to explore the proper-
ties of the sections on one silicon wafer we got in the initial JSON template.
The section properties (we call it template statistics) include the information
of the tissue’s and magnet’s average area sizes, mean distance between tissue
and magnet contour centroids, minimal distance between two magnet centroids
or minimal distance between two tissue centroids. Therefore, that is all the
information we extract from the template with, e.g. five, manually annotated
sections.

Second, we start by filtering out the candidates that are smaller than or
bigger than specified area size threshold, see Fig.4.5.

13

Figure 4.5: Detected centroids of each class

Afterwards, we pair the magnet with the corresponding tissue detection
based on the previously calculated tissue-magnet distance, see Fig. 4.6.

14

Figure 4.6: Section contours after filtering by area and pairing is finished

At the last step, we have found the contours and centroids of desired classes.
However, these contours usually have way more than 4 points (which is enough
to present the rectangle and provide microscope with). Therefore, there was
a need to make an absolute template that will cover all detected classes. In
addition to template statistics we mentioned in the beginning of this section, we
also choose one template (out of five) that will be an absolute template, section
shape representative. The absolute template is stored in the (0, 0) coordinates.
Tissue and magnet have their one absolute template. For example, to cover
one predicted tissue, we would translate the absolute template to the predicted
tissue centroid. After, we rotate the absolute template based on the orientation
we get from connecting this tissue’s centroid with its magnet’s centroids. This
is done so the display and proofreading is simplified, see Fig. 4.7. The wafer
merge is implemented in the script called wafer merge.py.

15

Figure 4.7: Result of the pipeline, final coordinates of detected classes

16

4.2 Software Tools

To call the pipeline, user first needs to specify where the input data is located
(the directory). Then, user is able to initiate the pipeline with the following
command:

usage: main.py [-h] --wafer -dir WAFER_DIR [--ngpus NGPUS]

[--num -patches NUM_PATCHES] [--num -throws NUM_THROWS]

[--num -angles NUM_ANGLES] [--ratio RATIO]

[--patch -size PATCH_SIZE] [--area -limit AREA_LIMIT]

[--min -distance -limit MIN_DISTANCE_LIMIT]

Machine Learning Pipeline for Brain Segmentation

optional arguments:

-h, --help show this help message and exit

--wafer -dir WAFER_DIR

Directory that contains all necessary

data of the wafer

--ngpus NGPUS Number of GPUs used for training

--num -patches NUM_PATCHES

Number of patches to generate with

artificial patch generator

--num -throws NUM_THROWS

Number of throws used in artificial

patch generator

--num -angles NUM_ANGLES

Number of angles to rotate generated

sections from 0 to 360 degrees in

artificial patch generator

--ratio RATIO Ratio of split data into training and

validation sets

--patch -size PATCH_SIZE

Patch sizes to be generated in artificial

patch generator

--area -limit AREA_LIMIT

Area threshold to use when merging wafer

--min -distance -limit MIN_DISTANCE_LIMIT

Min distance threshold to use when merging wafer

17

4.3 Details and Specifications

In this section, we will just mention some of the hardware and software
environment setup we had during the project development. This project was
developed on Google Cloud Platform [2] virtual machine instance.

4.3.1 Hardware

For training, we used 4 NVIDIA Tesla K80 GPUs. Therefore, for training of
360 iteration, we spent around 15 minutes. For training of 3600 iterations, we
spent around 2,5 hours. The hard disk size was 100 GB, which was enough to
place a large amount of artificially generated data for the training and validation.

4.3.2 Software

Some of the software packages we used are:

– PyTorch version: 1.0.0.dev20190316

– CUDA 10.0

– CUDNN 7.4.2

– NCCL 2.2

For the Mask R-CNN package, INSTALL.md7 instructions were followed.

7https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/INSTALL.md

18

Chapter 5

Results

To determine the settings for which the model will detect the highest amount
of correctly labeled sections, we performed several training with different set-
tings in order to get the optimal model. In this chapter, we will discuss the
effect of each setup on the performance of the model.

5.1 Patch Size

When generating artificial patches, the patch size is one of the parameters
that defines the dimensions of the artificially generated image. The input im-
ages usually have dimensions around 5000x5000 px. From these input images,
we create smaller patches that have dimensions that range from 200x200 px to
800x800 px. Also, the bigger patches contain more sections than the smaller
patches. These new artificial images will later be used as a training and vali-
dation sets during the training. We assumed that changing the patch size will
affect the performance of the training as well as the number of discovered sec-
tions. During this test, we worked only on one wafer, wafer 17. However, the
final results did not show any improvement nor decline.

5.2 Number of Iterations

One of the next things we tested was the number of total iterations during
the training on one wafer. The range of iterations we tested was in range from
180 to 3600. The results can be seen on Fig. 5.1.

19

Figure 5.1: How number of iterations affects the final result

From the results we can see that number of detected sections at 180th iter-
ation and 3600th iteration is very similar. The difference varies in around +-
2%. From this we concluded that the model reaches its peak in prediction score
already at 360th iteration. Therefore, for further analysis we used this setting.

5.3 Number of Initial Templates

Number of initial templates is specified by user in the beginning of the
pipeline. It is a file that contains several manually labeled sections. Therefore,
each section has its own template. In this test we wanted to see how number of
initially labeled sections affects the final prediction results. The results can be
seen on Fig. 5.2.

Figure 5.2: How number of templates affects the final result

We conclude that the number of detected sections increases by increasing the
number of initial section templates. It is important to note that the best output

20

will be achieved if the user is manually labeling a diverse set of sections. For
example, the initial template should contain darker (thicker) sections, lighter
sections, sections that have small deformations, etc. The bigger is the variance
of labeled sections, the higher is the number of correctly predicted sections.

5.4 Adding New Class

There was an idea of adding the new class for the training called section (see
Fig. 5.3). Therefore, we modified our implementation to support prediction
of the sections. In order to do that, we need to modify initial JSON template
with manually annotated sections and adding the new polygon with the name
section (s1). The artificial patch generator was slightly modified in order to
include the new class in the annotations file used for training. New category
was added, section=3. However, the way data was generated was not changed.
For the training, we needed to change the configuration file for Mask R-CNN
training, specifying the new value for NUM CLASSES. For the last two steps
of the pipeline, we add new class also called sections to our predictor which is
used to predict the contours around our classes of interest.

Figure 5.3: Result of the pipeline, final coordinates of detected classes

After analysing the results, we saw that the performance of finding just
magnet and brain tissue decreased. Without new section class, the discovery
of sections was 490/496 (98.8%) sections, whereas with the new section class,
the discovery of sections was 400/496 (80.65%). We can notice that adding
new object class decreased the accuracy of object detection by 18.15% in the
final result. Intuitively, we thought that the more classes we have the better
model will be performing. However, if we think about the discriminant function
approach, our inter-class variation was not big enough. The magnet and tissue
classes already seem very similar. By adding the new class that contains them,
we did not manage to draw the discriminant function between classes [1]. For the
next step, we wanted to check if the detection of sections alone performs better.

21

After gathering the final output results, we saw that it performs much better
than when combined with tissue and magnet classes. However, the discovery
rate was around 2-3 new sections and the time spent detecting objects was
doubled since we had to run the pipeline twice. We decided to discard this
approach in benefit of time spent in the pipeline.

5.5 New Image Channel

When generating artificial patches, we use 3-channel images from which
we create artificial patches. The first channel contains the original image, the
second channel contains the fluorescent image, and the third channel contains
blank image. Therefore, the third channel was not used. We wanted to see if
adding new information to the third channel will improve the results. By adding
preprocessed fluorescent image in the third channel, we did not see any change
in the accuracy of object detection.

5.6 Parallel Training and Master Model

We wanted to create a master model that will perform well on different wafer
images. In order to do that, we decided to run the training on all wafer images
we had. The first step was to create artificial patches using templates from all
wafers we have. This resulted in having more data for training and validation
of the model. The results can be seen in the following tables:

Wafer name # tissue # magnet # discovered # total %
Wafer 17 268 364 235 496 47.38
Wafer 16 213 331 187 433 43.19
Wafer 1 475 465 417 514 81.13
Wafer 2 378 484 316 503 62.82

Table 5.1: Anchor stride: (16, 32, 64, 128, 256), iteration: 360, confidence level:
0.7

In the table 5.1 we can notice that discovery percentage of Wafer 16 and 17
are very low, whereas Wafer 1 and 2 have around 15% higher discovery rate.
When exploring the reason of this output, we found that the predefined anchor
sizes used during the training could be the reason. This can be explained with
the fact that Wafer 16 and 17 have a somewhat smaller area than Wafer 1 and 2.
Therefore, shifting the anchor sizes to smaller dimensions, we reran our training.
The results could be seen in the table 5.2.

22

Wafer name # tissue # magnet # discovered # total %
Wafer 17 457 470 437 496 88.1
Wafer 16 390 414 377 433 87.07
Wafer 1 496 504 459 514 89.3
Wafer 2 544 592 449 503 89.26

Table 5.2: Anchor stride: (8, 16, 32, 64, 128), 360 iteration, confidence level:
0.7 - 88.43%

We can notice that the results got improved. For the next step, we wanted
to see what will happen if we change the number of training iterations. When
changing the number of iterations on Wafer 17 in the Section 5.2, we concluded
that there is no effect on the final results. However, we wanted to see whether
this applies to the parallel training that includes several different wafer images
and section properties. We increased the number of iterations to 3600 and the
results can be seen on Table 5.3.

Wafer name # tissue # magnet # discovered # total %
Wafer 17 469 474 454 496 91.53
Wafer 16 398 412 389 433 89.84
Wafer 1 487 505 463 514 90.08
Wafer 2 495 557 419 503 83.3

Table 5.3: Anchor stride: (8, 16, 32, 64, 128), 3600 iteration, confidence level:
0.7 - 88.69%

The last setting we wanted to change was the confidence level setup. The
confidence level specifies the threshold for prediction score, i.e. if the discovered
contour has a prediction score lower than the confidence level, and we discard
this candidate. Tables 5.4, 5.5, and 5.6 present the performance of the pipeline
when the confidence level is modified.

Wafer name # tissue # magnet # discovered # total %
Wafer 17 470 477 456 496 91.94
Wafer 16 401 416 392 433 90.53
Wafer 1 488 509 466 514 90.66
Wafer 2 509 569 425 503 84.49

Table 5.4: Anchor stride: (8, 16, 32, 64, 128), 3600 iteration, confidence level:
0.5 - 89.4%

23

Wafer name # tissue # magnet # discovered # total %
Wafer 17 481 483 472 496 95.16
Wafer 16 407 420 399 433 92.15
Wafer 1 489 511 462 514 89.88
Wafer 2 537 575 443 503 88.07

Table 5.5: Anchor stride: (8, 16, 32, 64, 128), 3600 iteration, confidence level:
0.1 - 91.32%

Wafer name # tissue # magnet # discovered # total %
Wafer 17 482 483 472 496 95.36
Wafer 16 410 421 403 433 93.07
Wafer 1 489 511 459 514 89.30
Wafer 2 547 574 448 503 89.07

Table 5.6: Anchor stride: (8, 16, 32, 64, 128), 3600 iteration, confidence level:
0 - 91.7%

Therefore, by creating a master model we generalized the model that will
perform equally well on different wafer images, with around 91.7% accuracy of
correct detection. However, when performing a training only on one wafer, the
number of found correct sections was higher, 98.8%.

5.7 Combination of Predictions on Several Patch
Sizes

After the training is finished, the next step is the inference. During the
inference, a lot of small subimages of an original image are cut in order to run
the prediction. The dimension of a subimage is usually in the same range as
the patch size during the artificial patch generator. Each subimage prediction
has an output that is a list of candidates. The candidates present the contour
and the label of detected object. During this test, we wanted to see how does
the change of subimage dimension affects the final results. During the training,
we used patch size of 400x400. For the inference, we compared the results with
400x400 subimage and 800x800, see Table 5.7.

Subimage size overlap ratio # photos # candidates # discovery
800x800 0.5 154 3989 475/496
400x400 0.5 624 4920 480/496 (1 wrong)

Table 5.7: How changes of the subimage dimension affects the results

In addition, we decided to combine the size of subimages, the results were
much better, see Table 5.8.

24

Subimage size overlap ratio # photos # discovery
800x800 + 400x400 0.6 1245 484/496

Table 5.8: How combination of different subimage sizes affect the results

5.8 Overlap

The overlap is the parameter used during the inference. It specifies how
much the subimages overlap. We define it as a number in range from 0 to 1.
The higher the number, the bigger is the overlap. Some of the results we can
see in the Table 5.9.

Subimage size overlap ratio # photos # candidates # discovery
400x400 0.5 624 4920 480/496 (1 wrong)
400x400 0.3 342 2525 481/496 (1 wrong)
400x400 0.2 255 1978 480/496 (1 wrong)

Table 5.9: How changes of the subimage affect the results

The observation was done on the subimages of size 400x400 px. We expected
to see that the number of discovery changes w.r.t. overlap threshold changes
and follows some trend. From the Table 5.9 we can see that by increasing the
overlap ration, the number of photos is increased, as well as, the number of
candidates is increased. Since we had more candidates, we expected to have
bigger discovery rate. However, the results were not varying much.

25

Chapter 6

Discussion

At the end of the project, we finished and polished the section segmentation
until the end. The developed software tools are now organized and easy to use.
In the report, we discussed different settings that we have implemented to make
our model more efficient.

We were mostly hoping to make a master model that would be able to
detect the sections on different silicon wafers with at least 95% precision without
providing manually labeled initial file. But, the current implementation showed
that the best performance is reached when wafers are trained separately (with
the precision above 95%). In addition, even if we had master model that works
better than the one trained on one wafer, we will still need manually annotated
sections on wafer. Therefore, as a final decision we choose to perform full
pipeline on single wafer images.

Another idea was to implement a website platform, where users would be
able to drag and drop the images and receive the prediction in a form of a JSON
labelme file. With the master model, the implementation of the website could
be done on the default server that has no GPU support. Since we found out that
the master model performs less well, the one pipeline per wafer implementation
would need the same settings as our virtual machine used on the Google Cloud
with 4 GPUs. The solution would be to use the services provided by Google AI
Platform1 or PyTorch on AWS2 that support training applications in the cloud.
Therefore, the next step for this project would be to create a web platform that
trains the model in the cloud.

1https://cloud.google.com/ai-platform/
2https://aws.amazon.com/pytorch/

26

Chapter 7

Summary

The challenge of the project was to correctly detect sections containing brain
tissue on a silicon wafer while fine-tuning the parameters of the machine learn-
ing pipeline. This machine learning pipeline includes creating the pretrained
model, generating artificial patches, training using Mask R-CNN framework,
and making a prediction.

While exploring different results, we learned how different setup affects the
performance of the pipeline. In the end, we successfully managed to create easy-
to-use software tools that would detect and precisely segment the magnets and
tissue parts of the section. The implementation was also made modular keeping
in mind the future support for cloud requests.

27

Chapter 8

Acknowledgements

Working on this project has been an amazing journey. I would like to express
my deep gratitude to my supervisors for the opportunity to continue work on
this project during the semester.

I would like to thank Thomas Templier for his patient professional guidance
and useful critiques of this project. I got an amazing opportunity to share
experience and gather new knowledge from Thomas.

I would also like to thank my professor Martin Jaggi for suggesting new
questions to ask and giving a useful feedback on the project development and
writing.

I would also like to extend my thanks to the people of the CIME laboratory
for their help in offering me an additional place in the office.

28

Bibliography

[1] Felix Abramovich and Marianna Pensky. “Classication with many classes:
challenges and pluses”. en. In: (), p. 24.

[2] Cloud Computing Services. en. url: https://cloud.google.com/ (vis-
ited on 06/06/2019).

[3] COCO API: Dataset @ http://cocodataset.org/ . Contribute to cocodataset/-
cocoapi development by creating an account on GitHub. original-date: 2015-
01-25T20:26:39Z. June 2019. url: https://github.com/cocodataset/
cocoapi (visited on 06/06/2019).

[4] Detecting tissue and magnet parts using Mask R-CNN : BrainSegmentation/tissue-
parts-detection. original-date: 2018-11-18T16:54:11Z. Mar. 2019. url: https:
//github.com/BrainSegmentation/tissue-parts-detection (visited
on 06/06/2019).

[5] FAIR’s research platform for object detection research, implementing pop-
ular algorithms like Mask R-CNN and RetinaNet.: facebookresearch/De-
tectron. original-date: 2017-10-05T17:32:00Z. June 2019. url: https://
github.com/facebookresearch/Detectron (visited on 06/06/2019).

[6] Fast, modular reference implementation of Instance Segmentation and Ob-
ject Detection algorithms in PyTorch.: facebookresearch/maskrcnn-benchmark.
original-date: 2018-10-24T17:34:50Z. June 2019. url: https://github.
com/facebookresearch/maskrcnn-benchmark (visited on 06/06/2019).

[7] Ross Girshick et al. Detectron. https://github.com/facebookresearch/
detectron. 2018.

[8] Kaiming He et al. “Mask R-CNN”. In: arXiv:1703.06870 [cs] (Mar. 2017).
arXiv: 1703.06870. url: http://arxiv.org/abs/1703.06870 (visited on
06/06/2019).

[9] PyTorch. en. url: https://www.pytorch.org (visited on 06/06/2019).

[10] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: Advances in Neural Information Pro-
cessing Systems 28. Ed. by C. Cortes et al. Curran Associates, Inc., 2015,
pp. 91–99. url: http://papers.nips.cc/paper/5638-faster-r-cnn-
towards- real- time- object- detection- with- region- proposal-

networks.pdf.

29

[11] Start Locally — PyTorch. url: https://pytorch.org/get-started/
locally/ (visited on 06/06/2019).

[12] Kentaro Wada. Image Polygonal Annotation with Python (polygon, rectan-
gle, circle, line, point and image-level flag annotation).: wkentaro/labelme.
original-date: 2016-05-09T12:30:26Z. June 2019. url: https://github.
com/wkentaro/labelme (visited on 06/06/2019).

30

