

3D Poses Recovery in Single-Particle Cryo-EM from Learned Pairwise Projection Distances

Supervisors: Laurène Donati (BIG) Michaël Defferrard (LTS2)

Professor: Michaël Unser (BIG)

*Student:* Jelena Banjac

Section: SC, Data Science

Project type: Optional semester project (8 cr.)

> Lausanne 17<sup>th</sup> January 2020

Image credits: biology stack exchange question

3D Poses Recovery in Single-Particle Cryo-EM from Learned Pairwise Projection Distances



# **Problem Statement**

# **EPFL** Single-particle Cryo-EM



acquisition of 2D projections



advanced algorithms

**EPFL** Single-particle Cryo-EM

3D volume of the protein (N copies)



# 2D projections of the protein (N copies)



| $\mathbf{p}_i = \mathbf{C}_{oldsymbol{arphi}} \mathbf{S}_{\mathbf{t}} \mathbf{P}_{	heta_i} \mathbf{x} + \mathbf{n}$ |                                   |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| $\mathbf{x} \in \mathbb{R}^{V}$                                                                                     | - 3D density map                  |
| $\mathbf{P}_{\theta_i} : \mathbb{R}^V \to \mathbb{R}^M$                                                             | - projection operator             |
| $\mathbf{S_t}: \mathbb{R}^M \to \mathbb{R}^M$                                                                       | - shift operator                  |
| $\mathbf{C}_{\boldsymbol{\varphi}}: \mathbb{R}^M \to \mathbb{R}^M$                                                  | - convolution operator (with CTF) |
| $\mathbf{n} \in \mathbb{R}^M$                                                                                       | - additive noise                  |

#### **Imaging Challenge and Project Goal** EPFL



To **reconstruct** the protein we need to know the angles of the projections.

reconstruction pipeline

# **Problem:**

Those projection angles are unknown in single-particle cryo-EM.



# **Goal of the Project:**

Angles recovery directly from the projections



# Proposed Method

# **EPFL** General Flow







**Relevant Literature (euclidean context):** I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli, "Euclidean distance matrices: essential theory, algorithms, and applications,"IEEE Signal Processing Magazine, vol.32, no.6, pp.12–30, 2015.



# Results

# **EPFL** Angle Recovery with Perfect Distances

# **Question:**

Is it possible to recover the angles from the perfect distances?

### How:

# Experiment 1

# **EPFL** Angle Recovery with Perfect Distances



Sphere coverage:



#### Result:

- optimization loss:

5.23e-04

# **EPFL** Phase 1: Angle Recovery with Perfect Distances

True angles count 1.0 1.5 2.0 2.5 0.0 0.5 3.0 Z1 axis angle rotation [rad] Y2 axis angle rotation [rad] Z3 axis angle rotation [rad] Predicted angles count 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Y2 axis angle rotation [rad] Z3 axis angle rotation [rad] Z1 axis angle rotation [rad]

# **EPFL** Angle Recovery with Perfect Distances

# **Question:**

Is it possible to recover the angles from the perfect distances?

# **Observation:**

It is possible to recover angles from the distances!

**Note:** This equation will be used as a measure of success (**GT loss**\*) in following experiments.



# **EPFL** Angle Recovery with Euclidean Distance

# **Question:**

Is an Euclidean d<sub>p</sub> a good estimation for d<sub>q</sub>?  $d_p(p_i, p_j) = C \cdot d_q(q_i, q_j)$ 

Is angle recovery possible in this setting?

# How: $\{\hat{q}_i\}_{i=1}^N = \arg\min_{\{q_i\}_{i=1}^N} \sum_i |d_p(p_i, p_j) - d_q(\hat{q}_i, \hat{q}_j)|^2$ Euclidean distance estimation (baseline) $d_p(p_i, p_j) = \sqrt{\sum_{k=1}^n (p_{i_k} - p_{j_k})^2}$

# Experiment 2

# **EPFL** Euclidean Distance as Distance Metric

**Question:** Is an *Euclidean*  $d_{p}$  a good estimation for  $d_{q}$ ?



### **Observation:**

Linear relation between  $d_p$  and  $d_q$  only valid for small angle distances!

# **EPFL** Angle Recovery with Euclidean Distance

**Question:** What is the effect of sampling strategy in angle recovery?



**Observation:** Projections are concentrating in angle space!

# **EPFL** Angle Recovery with Estimated Distances

# **Question:**

Is an *Euclidean* d<sub>p</sub> a good estimation for d<sub>a</sub>?

$$d_p(p_i, p_j) = C \cdot d_q(q_i, q_j)$$

# **Observation:**

Linear relation between  $d_p$  and  $d_q$  only valid for small angle distances!

Projections are concentrating in angle space!

# Experiment 2

# **EPFL** Distance Estimation with Siamese Neural Network

# **Question:**

Is an SiameseNN d\_p a good approximation of d\_q?  $d_p(p_i,p_j) \approx d_q(q_i,q_j)$ 

Is angle recovery possible in this setting?

## How:



#### **Distance Estimation with Siamese Neural Network** EPFL

# **Question:** Is it possible to learn distance metric?



#### Settings:

- 500 epochs: batch size: 256 # projections: 3K
- 60K
- # pairs:
  - learning rate: 0.001

**Observation:** Metric learning works, though it overfits.

# **EPFL** Distance Estimation with Siamese Neural Network

# **Question:** Is an *Siamese NN* d<sub>n</sub> a good approximation of d<sub>n</sub>?

/alidation train 3.0 2.5 2.0 ₽'1.5 1.0 0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 dQ

Training & validation set projection distances ratio

**Observation:** linear relation between  $d_p$  and  $d_q$  is valid for small and big distances!

# **EPFL** Angle Recovery with Siamese Neural Network

Question: Is angle recovery possible?

**Optimization result:** 





**Observation:** Angle recovery very noisy. GT loss not intuitive/informative.

# **EPFL** Distance Estimation with Siamese Neural Network

# **Question:**

Is an SiameseNN  $\rm d_p$  a good approximation of  $\rm d_q?$   $d_p(p_i,p_j)\approx d_q(q_i,q_j)$ 

Is angle recovery possible in this setting?

# **Observation:**

Metric learning works, though it overfits.

Linear relation between  $d_p$  and  $d_q$  is valid for small and big distances!

Angle recovery very noisy.

# Experiment 3

# **EPFL** Summary of the Results

- **1.** Two steps work independently
  - **a.** angle recovery can recover the angles from perfect distances
  - **b.** *distance estimation* from projections alone is possible
- 2. We could *not* estimate angles from approximate distance estimations
  - **a.** using Euclidean
  - **b.** using SiameseNN

# **Future Work**

# **EPFL** Future work

- Make the angle estimation work with approximate distances
  - better distance estimation
  - more robust angle estimation
- Test on realistic data (noise, CTF, etc.)
  - robustness to noise
  - robustness to unseen protein volumes
  - faithfulness of transfer function representing the projection shift, CTF, noise, etc.
  - final goal to test on real data

26

# Thank you

Questions?

## **EPFL** Project Timeline (3 phases)



Sphere coverage:



**Observation:** We have a half-sphere coverage, but GT loss is not really good. Can we do more?

Angle estimation error metric:

$$\arg\min_{R} \frac{1}{N} \sum_{i=1}^{N} |d_q(q_i, \mathbf{R} \hat{q}_i)|$$

 ${\boldsymbol R}$  - global rotation quaternion

Angle estimation error metric:

$$\underset{R}{\operatorname{arg\,min}} \frac{1}{N} \sum_{i=1}^{N} |d_q(q_i, \widehat{R}\hat{q}_i)|$$

 ${\boldsymbol R}$  - global rotation quaternion

- true angles

- predicted angles

#### **Before rotation values:**

- GT loss: 1.009
- Angle estimation error: 1.848 rad (~105.9°)



Angle estimation error metric:

$$\arg\min_{R} \frac{1}{N} \sum_{i=1}^{N} |d_q(q_i, \hat{R}\hat{q}_i)|$$

 ${\boldsymbol R}$  - global rotation quaternion

- true angles

- rotated predicted angles
- initial predicted angles

#### After rotation values:

- GT loss: 1.004
- Angle estimation error: 1.845 rad (~105.7°)



31

Estimated angles initialized as: true angles

### Angle estimation error metric:

$$\underset{R}{\operatorname{arg\,min}} \frac{1}{N} \sum_{i=1}^{N} |d_q(q_i, \widehat{R}\hat{q}_i)|$$

- ${\cal R}\,$  global rotation quaternion
- 🔴 true angles
- predicted angles

#### **Before rotation values:**

- GT loss: 0.32
- Angle estimation error: 0.1867 rad (~10.69°)



Estimated angles initialized as: true angles

### Angle estimation error metric:

$$\underset{R}{\operatorname{arg\,min}} \frac{1}{N} \sum_{i=1}^{N} |d_q(q_i, \widehat{R}\hat{q}_i)|$$

- ${\cal R}\,$  global rotation quaternion
- true angles
- rotated predicted angles
- initial predicted angles

### After rotation values:

- GT loss: 0.324
- Angle estimation error: 0.188 rad (~10.77°)





# **EPFL** Relevant Literature



[FIGS1] A map of Switzerland with the true locations of five cities (red) and their locations estimated by using classical MDS on the train schedule (black). [Ivan Dokmanić, Reza Parhizkar, Juri Ranieri, and Martin Vetterli]

# Euclidean Distance Matrices



Essential theory, algorithms, and applications

uclidean distance matrices (EDMs) are matrices of the squared distances between points. The definition is deceivingly simple; thanks to their many useful properties, they have found applications in psychometrics, crystallography, machine learning, wireless sensor networks, acoustics, and more. Despite the usefulness of EDMs, they seem to be insufficiently known in the signal processing community. Our goal is to rectify this mishap in a concise tutorial. We review the fundamental properties of EDMs, such as rank or is by using EDMs; for an example, see "Swiss Trains (Swiss Map Reconstruction)."

We often work with distances because they are convenient to measure or estimate. In wireless sensor networks, for example, the sensor nodes measure the received signal strengths of the packets sent by other nodes or the time of arrival (TOA) of pulses emitted by their neighbors [1]. Both of these proxies allow for distance estimation between pairs of nodes; thus, we can attempt to reconstruct the network topology. This is often termed *sel-localization* [2]–[4].

Image credits: Euclidean Distance Matrices, [Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli], IEEE IEEE SIGNAL PROCESSING MAGAZINE IEEE SIGNAL PROCESSING MAGAZINE, 2015

# **EPFL** Future work

Done:

- Data without noise
- Euclidean distance for projections
- ✓ Working in quaternion and projection spaces
- ✓ Using kNN to create sparse connected graphs
- Output of Siamese network used as a projections distance
- ✓ New angle estimation error metric

**EPFL** Optimizations



 $p_i, p_j - i^{th}$  and  $j^{th}$  projections  $q_i, q_j - i^{th}$  and  $j^{th}$  quaternions (projection angles)  $d_p$  - distance between projections  $d_q$  - distance between quaternions (projection angles)



