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=PFL Single-particle Cryo-EM

electron beam
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acquisition of advanced
2D projections algorithms



=PFL Single-particle Cryo-EM

3D volume of the 2D projections of the
protein (N copies) protein (N copies)

Cryo-EM

pi = C,S¢Pyx+n

X E R"' - 3D density map

PU,— RV 5> RM . projection operator

St : RM _y RM - shift operator

C‘P : IRM o ]RM - convolution operator (with CTF)
ne ]RM - additive noise



cPrL Imaging Challenge and Project Goal

a g g To reconstruct the protein
we need to know the
“ : » angles of the projections.

reconstruction
pipeline

Problem:

Those projection angles are unknown in single-particle
cryo-EM.

Goal of the Project:
Angles recovery directly from the projections
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=PFL General Flow

N projections
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2D projections

Distance

Distance
dp(P1: P2)

Projections Space

dq(d1, 92)

N projections
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Connected Sparse
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Key assumption:
d ~d
P q

e.g. small dp => small dq
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ePFL | 1 1) Distance estimation (offline)

A — s s e A S S AEAS

d, = arg mmz |§d pz,p])\i— dq(Qia C]j)|2

P

“ Distance between prolectlons “
dP

Siamese Network
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=PFL = 2  Angle recovery (online)

{QI =1 =

Quaternion distance dq
dq(4i, qj) = 2arccos(| < gi,q; > |)

What is quaternion?
g = a+ bi + cj + dk

o s )

Real Imaginary

Part Part
2 = l'2 = K2
fI=J=k
Ki = -ik = j
jk=-kj=i

Unit quaternion:

P+j2+K2=1

Z |dy(pi, pj)—dy(ai; qj)|2

projections, can we estimate

Assuming we have the
distance between the

their positions on SO(3)?

Distance g:g?;tri\?gnll
dq(CI1s qZ)
dp(p1, Pz)
, P4 | Q4
Projection 2 p‘ ' Q1

Quaternion 2

\ P5|Q5 —— Pslag
/P2[q2 / \

97|Q7

Relevant Literature (euclidean context): I. Dokmanic, R. Parhizkar, J. Ranieri, and M.
i, “Euclidean distance matrices: essential theory, algorithms, and applications,”|EEE
Signal Processing Magazine, vol.32, no.6, pp.12-30, 2015.
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Angle Recovery with Perfect Distances

Question:

Is it possible to recover the angles from the
perfect distances?

How:
(@5 = arg min > |d,(pi.py) = dy(di 4))
Qifi=1
l ‘ perfect
distance
4 estimation

dy(pi, pj) = dy(qi, q;)
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loss
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Angle Recovery with Perfect Distances

Optimization resulit:

0 2000 4000 6000 8000 10000

time [s]

Result:

- optimization loss: 5.23e-04

Sphere coverage:

12
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Phase 1: Angle Recovery with Perfect Distances

=PrL

True angles count

°
mmmmm

o |
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Y2 axis angle rotation [rad]
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Predicted angles count
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Angle Recovery with Perfect Distances

Question:

Is it possible to recover the angles from the
perfect distances?

Observation:

It is possible to recover angles from the
distances!

Note: This equation will be used as a
measure of success (GT loss*) in
following experiments.

*GT loss = ground truth loss



=P-L Angle Recovery with Euclidean Distance

Question:

Is an Euclidean dp a good estimation for dq?
|s angle recovery possible in this setting?

How:
{G:}Y, = arg min > |dy(pi, p;) — dy(di, )|
—

qi} i=1 -
(2
Euclidean distance
estimation

- 4 (baseline)

dy(pi, pj) = J > (i — pi)?

k=1
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d_p

Euclidean Distance as Distance Metric 16

Question: Is an Euclidean dp a good estimation for dq?

10 projection distances to all the others: kNN closest distances density plot:

Observation:
Linear relation between dp and dq only valid for small angle distances!



=PFL Angle Recovery with Euclidean Distance 17

Question: What is the effect of sampling strategy in angle recovery?

Settings: Settings:
- sampling: kNN closest - sampling: half kNN closest +
half random
Result: Result:
- optimization loss: 3.27e-01 - optimization loss: 2.20e+00
- GT loss: 1.4478 - GT loss: 1.2948

Observation: Projections are concentrating in angle space!
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Angle Recovery with Estimated Distances

Question:
Is an Euclidean dp a good estimation for dq?

dp(pi, pj) = C - dy(qi, q;)

Observation:

Linear relation between d_and d only valid for
small angle distances!

Projections are concentrating in angle space!




=PFL Distance Estimation with Siamese Neural Network

Question:

Is an SiameseNN dp a good approximation of dq?
dy(pi,pj) = dg(qis ;)

Is angle recovery possible in this setting?

How:

A A2
{q,} 1—(\10 111111 E \dy(pi, pj) — dqg(Gi, ;)]
‘ll —1 . '—r_J
SiameseNN
distance estimation

SiameseNN

d,(p;i,pi) = :
/'(1' I J) model function




=PFL Distance Estimation with Siamese Neural Network

Question: Is it possible to learn distance metric?

MSE error MAE error
05 { === Training Loss —— MAE Training
- Validation Loss - MAE Validation
05
04
Settings:
. o - epochs_:
8 8 - batch size:
. - # projections:
v - # pairs:
\ - learning rate:
01 ! 02 L

0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch

Observation: Metric learning works, though it overfits.

20

500
256
3K
60K
0.001
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Distance Estimation with Siamese Neural Network

Question: Is an Siamese NN dp a good approximation of dq?

Training & validation set projection distances ratio

validation
train

0.0 05 10 5 20 25 3.0
dQ

Observation: linear relation between dp and dq is valid for small and big
distances!

21



=PFL  Angle Recovery with Siamese Neural Network

Question: Is angle recovery possible?

Optimization result:

GT Loss before angle recovery: 1.0909

Angle recovery loss: 9.13e-01

0 5000 10000 15000 20000 25000
time [s]
GT Loss after angle recovery: 1.0042

sssssss

nnnnnnn

True angles

500

200

zzzzzzz
aaaaaaaaaaaaaaaaaaaaaaaa

zzzzzzz

Observation: Angle recovery very noisy. GT loss not intuitive/informative.



=PFL Distance Estimation with Siamese Neural Network

Question:

Is an SiameseNN dp a good approximation of dq?
dy(pi,pj) = dg(qis ;)

Is angle recovery possible in this setting?

Observation:
Metric learning works, though it overfits.

Linear relation between d_and d is valid for
small and big distances!

Angle recovery very noisy.
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Summary of the Results

1. Two steps work independently
a. anglerecovery canrecover the angles from perfect distances

b. distance estimation from projections alone is possible

2. We could not estimate angles from approximate distance estimations
a. using Euclidean

b. using SiameseNN

24
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Future work

d Make the angle estimation work with approximate distances

3
H

better distance estimation

more robust angle estimation

d Testonrealistic data (noise, CTF, etc.)

H
H
H

robustness to noise

robustness to unseen protein volumes

faithfulness of transfer function representing the projection shift,
CTF, noise, etc.

final goal to test on real data

26



-
O
> )
=
-
©
S
-

Questions?

S80UE)SIq Uonoafold asimiied pauieaT woly NJ-0A1D 8|oiued-a|bulS ul A1on008y s8sod S W

=PrL



=PFL Project Timeline (3 phases)

Phasel Phase 2
-
Angle — Distance SN
recovery o estimation |
\

d, metric: d.. metric: dp, metric:
L2 distance sz distancc.e:- learned

distance

simulated data:
without noise

28

Phase 3

Performance
characterization

W.r.t. noise,
CPF, positioning,
volumes, etc.




=PFL Phase 2.2: Angle Recovery with Siamese Neural Network

Sphere coverage:

1.0

1.0

Yo

-0.5

AT SN AT Y O
ROR R OEC S ': SR -.!::!'
05 0* 05 1.0

Observation: We have a
half-sphere coverage, but
GT loss is not really good.
Can we do more?

Angle estimation error metric:

Z dy(qi, Ra;)|

R - global rotatlon quaternion

arg 111111

29



=PFL Phase 2.2: Angle Recovery with Siamese Neural Network 30

Angle estimation error metric:
N
. 1 (3 A
arg min - > |d, (q:R4;)
R N 1 o
P

R - global rotation quaternion

@® - true angles

© - predicted angles

Before rotation values:

- GTloss: 1.009
- Angle estimation error: 1.848 rad (~105.9°)
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Phase 2.2: Angle Recovery with Siamese Neural Network

Angle estimation error metric:

N
| —
arg min — Z d,(qi, Rq;)
; ,
=1

R - global rotation quaternion

@® - true angles

@ - rotated predicted angles

@ - initial predicted angles

After rotation values:

- GTloss: 1.004
- Angle estimation error: 1.845 rad (~105.7°)

31



=PFL Phase 2.2: Angle Recovery with Siamese Neural Network
Estimated angles initialized as: true angles

Angle estimation error metric:

1

N
arg min — Z ‘dq(Qz(Rqu)
R ;\( - -=-
1=1
R - global rotation quaternion

@® - true angles

© - predicted angles

Before rotation values:

- GTloss: 0.32
- Angle estimation error: 0.1867 rad (~10.69°)



cPFL Phase 2.2: Angle Recovery with Siamese Neural Network 33
Estimated angles initialized as: true angles
Angle estimation error metric:

arg mm d( st R ;)
i

R - global rotation quaternion

@ - true angles %8

@ - rotated predicted angles

@ - initial predicted angles

After rotation values:

- GTloss: 0.324
- Angle estimation error: 0.188 rad (~10.77°)




g = cos(0°) + sin(0°)(1.00z + 0.005 + 0.00k)

‘9 p= ix jx kx ijksphere x

g1 = cos(0°) + s1n(0°)(1 00: + 0. 0017“4'“%%){ )

flp)=q-p- ql"” |




=P-L Relevant Literature

L G Z N B
Lausanne 0 33 128 40 66
Geneva 33 0 158 64 101

Zurich 128 158 0 88 56
Neuchatel [ 40 64 88 0 34
Bern 66 101 56 34 0

‘\,. Zurich

Neuchatel

P
Switzerland

Lausanne

Geneva

[FIGS1] A map of Switzerland with the true locations of
five cities (red) and their locations estimated by using
classical MDS on the train schedule (black).

Euclidean

Distance Matrices

Essential theory, algorithms,

uclidean distance matrices (EDMs) are matrices of the
squared distances between points. The definition is
deceivingly simple; thanks to their many useful proper-
ties, they have found applications in psychometrics,
crystallography, machine learning, wireless sensor net-
works, acoustics, and more. Despite the usefulness of EDMs, they
seem to be insufficiently known in the signal processing commu-
nity. Our goal is to rectify this mishap in a concise tutorial. We
review the fundamental properties of EDMs, such as rank or

¢, Reza Parhizkar, Juri Ranieri, and Martin Vetterli

35

and applications

is by using EDMs; for an example, see “Swiss Trains (Swiss Map
Reconstruction).”

We often work with distances because they are convenient to
measure or estimate. In wireless sensor networks, for example, the
sensor nodes measure the received signal strengths of the packets
sent by other nodes or the time of arrival (TOA) of pulses emitted
by their neighbors [1]. Both of these proxies allow for distance esti-
‘mation between pairs of nodes; thus, we can attempt to reconstruct
the network topology. This is often termed self-localization [2}-[4].

Image credits: Euclidean Distance Matrices, [lvan Dokmanic, Reza Parhizkar, Juri
Ranieri, and Martin Vetterli], IEEE IEEE SIGNAL PROCESSING MAGAZINE IEEE
SIGNAL PROCESSING MAGAZINE, 2015
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Future work

Done:

Data without noise

Euclidean distance for projections

Working in quaternion and projection spaces
Using KNN to create sparse connected graphs

Output of Siamese network used as a projections distance

DN N N N R N

New angle estimation error metric

36
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Optimizations

arg min Z |dp(pf,;,pj) — dq(qi, Qj)‘Q

2 ] L J
z s
\
f 1 \

l, ) 2
. 4

Distance estimation Angle recovery
(offline) (online)

pi, pj - 1" and j** projections

i, g5 - it" and j'" quaternions (projection angles)

d, - distance between projections

d, - distance between quaternions (projection angles)

37
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P Y
Angle = Distance
recovery o estimation
e 4
dp, metric: d. metric:  + dp, metric:
L2 distance sz distanc.e: > leamned
distance

simulated data:
without noise



