
Semester Project - 8 ECTS

3D Poses Recovery in

Single-Particle Cryo-EM from
Learned Pairwise Projection Distances

January 17, 2020

Author:
Jelena Banjac
Master of Data Science

Director:
Prof. Michael Unser

Advisors:
Laurène Donati (BIG)

Michaël Defferrard (LTS2)

Biomedical Imaging Group
Ecole Polytechnique Fédérale de Lausanne



Abstract

Single-particle cryo-electron microscopy (cryo-EM) is a technology that allows
the observation and the high-resolution 3D structure determination of biomolecules.
In this project, the goal is to estimate the angles at which we imaged the 2D projec-
tions from a given 3D protein. We developed deep learning models to estimate the
angles from learned pairwise projection distances. We designed a two-step method:
1) distance estimation using a Siamese neural network to learn the distance between
pairs of projections, and 2) angle recovery that includes a minimization scheme in
order to estimate the angles at which each projection was taken. The current results
obtained are discussed depending on different combination of approaches used and
experimental conditions.

Keywords: deep learning, imaging, biology, cryo-EM, quaternion, siamese, dis-
tance metric, angle recovery
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1 Introduction
Single-particle cryo-electron microscopy (cryo-EM) is a Nobel-prized technology that aims
to reconstruct the 3D structure of various proteins at the atomic resolution[1]. The
electron microscope (EM) first images at cryogenic temperature numerous replicates of the
protein [2] positioned at various orientations (acquisition of 2D projections, see Fig.1(a)).
Afterwards, using this set acquired projections as an input to advanced single-particle
analysis algorithms, scientists are able to reconstruct a high-resolution 3D structure of
the protein (reconstruction pipeline, see Fig.1(b),(c))[3].

electron	beam

acquisition	of	
2D	projections

advanced	
algorithms

reconstruction
pipeline

(a) (b) (c)

Figure 1: Cryo-EM reconstruction of a 3D protein structure from its 2D projections; (a)
clones of the protein take random orientations in water and are then freezed; the elec-
tron beam is sent through the ice and captures the 2D image of the protein replicates; (b)
imaging algorithms are used to segment the acquired 2D image to find separate 2D projec-
tions depending on the protein’s orientation; (c) advanced 3D reconstruction algorithms
are used to reconstruct the 3D structure of the protein. There, red arrows represent the
angles at which the 2D projection images were taken. Image credits at [4]

The main challenge in single-particle cryo-EM reconstruction is that the angles at
which the projection images were taken are unknown. The goal of this project is to recover
the angles directly from the 2D projections. This is challenging as the 2D projection
images are noisy, blurred, and can be shifted, see Fig.2. We present neural networks
designed for estimating pairwise distances between pairs of 2D projections in order to
recover these angles. To train our network, we simulate many projections of the protein.
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Figure 2: Cryo-EM allows observation of protein replicates positioned at N random ori-
entations. From this, we get N 2D projections of this protein that are extremely noisy
and blurred.
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Through the following model, we consider that a cryo-EM measurement (i.e. 2D
projection) yi ∈ RM is acquired through

yi = CϕStPθix+ n, (1)

where x ∈ RV is the unknown 3D density map[5] (Coulomb potential). The operator
Pθi : RV → RM is the projection along the 3D pose θi (i.e., the x-ray transform). The
operator St : RM → RM is a shift of the projection by t = (t1, t2). The convolution
operator Cϕ : RM → RM models the microscope contrast transfer function (CTF) with
parameters ϕ = (d1, d2, αast), that are, respectively, the defocus-major, the defocus-minor
and the angle of astigmatism. Finally, n ∈ RM represents an additive noise. Our goal is
then to recover the angles θi from every projection yi.

The report is structured as follows: In Chapter 2 we discuss the method developed in
this project. In Chapter 3 we show the results obtained during the project. In Chapter 4
we discuss the results and propose future developments (section 4.1). We then conclude
in Chapter 5.
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2 Proposed Method

2.1 Rotation in SO(3) and Quaternions

There exist many ways to deal with rotations, such as Euler angles, rotation matrices, axis
angles, quaternions 1. In this work, we used the quaternion representation of rotations in
3D space. Quaternions can be seen as the extension of complex numbers[6]. Quaternions
are generally represented in the form:

w + x i+ y j+ z k (2)

where w, x, y, and z are real numbers, and i, j, and k are the fundamental quaternion
units.

Let’s imagine that we have an electron beam positioned above a protein and we take
a 2D projection image. Afterwards, we rotate the protein around Z − Y − Z axes in 3D
space with α, β, γ angles respectively and take another image. If the initial 2D projection
results rotation angles (0, 0, 0), then the rotation that follows gives the projection with
rotation angles (α, β, γ).

Now, let the quaternion qZ,α be the rotation around Z axis with angle α, the quaternion
qY,β be the rotation around Y axis with angle β, and the quaternion qZ,γ be the rotation
around Z axis with angle γ. The product of these three rotation quaternions[7] (a.k.a.
Hamilton product[8]) are equivalent to the rotation qZ,α, followed by the rotation qY,β,
and followed by the rotation qZ,γ. Therefore:

q = qZ,αqY,βqZ,γ (3)

where q is a new quaternion presenting all three rotations combined in that order.

Quaternion Distance The distance θ ∈ [0, 2π] in radians between two quaternions q1
and q2[9] is given by:

θ = 2arccos (|〈q1, q2〉|). (4)

Quaternion-Euler angle conversions Since we are working with the quaternion rep-
resentation of 3D rotations, it is necessary to handle the quaternion-Euler angle conversion
in both directions. The equations for conversion can be seen in the Appendix chapter 6.

2.2 Pipeline Overview

We have a two-step method (see Fig.3):

1. distance estimation (offline) - once the distance metric between two projections
is determined, it will be used for all future angle recoveries.

2. angle recovery (online) - will be ran with each new protein dataset of 2D pro-
jection images.

Assuming we have the distance estimation, we can only then do the angle recovery.
These two types of optimizations are dual problems which we will further discus in the
following text (section 2.3 and section 2.4).

1https://www.andre-gaschler.com/rotationconverter/
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In addition to these two optimization, we will have a third optimization that will be
used to estimate the error of the angle recovery. This optimization can be used only when
the true rotation angles are provided and serves us just to see and understand more how
far is estimated result from the optimal result (section 3.3).

The fact that we are dealing with the two-step method (distance estimation and angle
recovery) can be seen in Fig.3. We start with 2D projection images and end up with their
corresponding angles.
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Figure 3: Project pipeline overview. With distance estimation method (i.e. estimating
the function dp) we create connected sparse similarity graph (see first purple arrow). The
nodes represent the projection image vectors and its corresponding quaternion. The edges
connect the closest nodes depending on their distance metric (projection distance and
quaternion distance). The weights of the edges are the distances between two correspond-
ing projection images p1 and p2 denoted as dp(p1, p2) and their corresponding distance
between corresponding quaternions q1 and q2 denoted as dq(q1, q2). These quaternion val-
ues are unknown and our goal is to find them. We aim to reconstruct the angles from the
learned pairwise distances using angle recovery method (see second purple arrow).

2.3 Distance Estimation (Offline)

The challenge we were facing was how do we define the distance between two 2D projec-
tion images and how this distance is connected to the distance between two quaternions.
Since we are not able to create one with the desired invariants manually (e.g. invariant
to translation), our goal was to learn a distance metric such that if the two 2D projec-
tion images are close in the embedding space of projections, the distance between the
corresponding quaternions of rotation angles will be small in the quaternion space as well.

In order to do that, we use the Siamese Neural Network (SiameseNN)[10] to learn
the distance metric between two 2D projection images. This is done only once in the
beginning. The goal of SiameseNNs is to learn a similarity function which in our case is
the distance between two 2D projection images dp. With this network implementation
we aim to classify (i.e. calculate the distance between two 2D projection images) the new
unseen proteins without training the network again.
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Ideally, we expect estimated distance dp to be the function that is the equal to the
function of the quaternion distance dq. To learn the estimated distance d̂p we use the
SiameseNN with the following loss equation:

d̂p = argmin
dp

∑
i,j

|dp(pi, pj)− dq(qi, qj)|2 (5)

where the dp is distance metric between two projection images pi and pj; and dq is the
quaternion distance between two quaternions qi and qj.

Using the software tools for data simulation we generate numerous 2D projection
distances with their corresponding rotation angle values. Therefore, in the equation 19
we know the dq, qi, qj as well as corresponding pi, pj and we are left to learn the best
value of dp.

CNN CNN

distance
|| Gw(P1) - Gw(P2) ||

Gw(P1) Gw(P2)

W

P1 P2

loss(P1, P2)

Siamese
network

Figure 4: The architecture of the implemented Siamese Neural Network. The p1 and p2
are pairs of 2D projection images. Each one is the input to the corresponding CNN model.
These two CNN models share the weights w. The output of two CNN models is a value of
the function Gw(p1) and Gw(p2), respectively. These functions are embedding two inputs
into some highly structured space, where this output is then be used by the following
function calculating their element-wise absolute difference (see red box). The output of
this Siamese Neural Network is a distance metric representing a distance between two
input images p1 and p2 in an embedding space.

The SiameseNN is a type of a network that uses multiple instances of the same model
and share same architecture and weights (the two sister convolutional neural networks
(CNNs) on Fig.4). We have two copies of the same network that share the same weights.
As input, we have two projection images (p1 and p2) which are passed through CNN
models to generate a fixed-length feature vector for each (Gw(p1) and Gw(p2)). If the
two input projection images have similar features, then their feature vectors must also
be similar, whereas if the two input projection images have different features, then their
feature vectors will also be different. Thus the element-wise absolute difference between
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the two feature vectors must be very different in both the above cases. Hence the loss
value generated by the output loss layer must also be different in these two cases. This is
the central idea behind the Siamese Networks[11].

2.4 Angle Recovery (Online)

Angle recovery is done every time we are provided with the new protein dataset for which
we want to discover their corresponding angles. With this method we recover the angles.
With this optimization we want to estimate projections’ position in quaternion space
assuming we know the distance metric between the projection images (done in distance
estimation part, section 2.3).

With angle recovery we are embedding the projections into the quaternion space.
The angle recovery represents the reverse method compared to the projection to graph
conversion.

To estimate the quaternions (therefore the rotation angles), we optimize the following
equation:

{q̂i}Ni=1 = argmin
{q̂i}Ni=1

∑
i,j

|dp(pi, pj)− dq(qi, qj)|2 (6)

where the dp is distance metric between two projection images pi and pj; and dq is the
quaternion distance between two quaternions qi and qj.

In this case, the values of dp, pi, pj as well as dq are known and we are left to learn the
best set of qi values. Knowing the quaternion values, we are able to get the final values
of the rotation angles using the conversion defined in the section 2.1.

In the beginning, we assumed we know the distance metric dp by using the Euclidean
distance as a baseline. With this we performed the angle recovery optimization just to
confirm it starts to converge to lower loss.

We were not able to find some existing methods that would estimate the angles. One
similar challenge, but with pose recovery in the Euclidean setting is described in paper
[12].
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3 Experiments
For the experiments, we use software tools designed for data generation thatrely on the
ASTRA Toolbox2 designed for 2D and 3D tomography that was used for accelerated
simulated data generation.

The three main development phases of the project are:

1. Development of the angle recovery method;

2. Development of the distance estimation method;

3. Performance characterization.

In Phase 1 we use an Euclidean distance as estimated distance between the projections
dp (i.e. we assume we have a perfect distance metric). For the angle recovery itself, we
try to recover the angles from the simulated projections of the protein that do not have
any noise. In this step, we just want to make sure the optimization is doable.

In Phase 2 we implement the Siamese Neural Network in order to learn the perfect
distance metric dp. We run the angle recovery part with this learned distance metric
in order to observe the results. In addition, we find the global rotation R that globally
rotates all the estimated quaternions in order to minimize the angle recovery error.

Lastly, we planned to use simulated data with noise or real acquired images from the
protein database3.

3.1 Phase 1: Angle Recovery with the Perfect Distances

In this experiment we run the angle recovery assuming we have a perfect distance estima-
tion dp. Therefore, instead of dp(pi, pj) in the equation 6 we put dq(qi, qj) which represents
the distance between the true quaternions. The optimization equation now looks like this:

{q̂i}Ni=1 = argmin
{q̂i}Ni=1

∑
i,j

|dq(qi, qj)− dq(q̂i, q̂j)|2 (7)

.
We start by random uniform distribution of the quaternion values q̂i and q̂j and we

want to see if during the optimization we manage to estimate the true quaternions qi and
qj.

For the optimization we use the tensorflow with the GPU support. We split the
training data into batches of size 256 and we restrict ourselves to the half-spere of the
asymmetric protein (called 5j0n). Other settings are:

• Number of steps: 100K

• Optimizer: Adam (gradient-based optimization)

• Learning rate: 0.01

• Number of projections: 5K

• Angle coverage: half-sphere

• Sampling: random
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Figure 5: Optimization loss w.r.t. time

The optimization performace can be seen in Fig.5.
The optimization loss is 5.23e-04.
The sphere coverage in the Euler angle space can be seen in Fig.6 and represents

the results of the angle recovery. We can see that the projection images cover the half
sphere as expected. Together with the small loss value, we can confirm that the good
performance of the algorithm is possible.

Figure 6: The sphere coverage after the angle recovery optimization in where the dp is
assumed to be the quaternion distance between corresponding quaternions.

This optimization equation 7 is used to measure our success (i.e. the ground truth
loss) in the following phases.

2https://github.com/astra-toolbox/astra-toolbox
3https://www.rcsb.org/
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In addition, the main problem is that we can not just take the error between the
estimated and true angles since they are not invariant to rotation (i.e. any global rotation
of angles is as valid as any other). Hence, here we concentrate on computing the error on
the distances.

In the end of this phase, we can conclude that it is possible to recover the angles from
distances using the perfect distance estimation.

3.2 Phase 2.1: Angle Recovery with Estimated Distances

In this experiment we run the angle recovery using the baseline Euclidean distance as
our distance metric dp. Therefore, the value of dp is dp(pi, pj) =

√∑n
k(pik − pjk)2 in the

equation 6. With this experiment we want to see if there is a linear dependence between
dp and dq, and is an Euclidean distance for dp a good estimation for dq: dp(pi, pj) =
C · dq(qi, qj), where C is a constant.

In this experiment, we do not use the ground truth angles in the optimization. We
want to estimate the angles only using the projections and their estimated distance (in
this case Euclidean distance).

From the plot in Fig.7 we cna see that smallest distances tend to be linear. This can
happen due to the symmetries in the proteins or projections. It seems that the Euclidean
distance is predictive for small distances, but flat afterwards.

Figure 7: The dq values on the x-axis and dp values on the y-axis. The plot resents the
ratio dp

dq
of distances between 10 random projections compared to all the other projections

for each.

In the plot in Fig.8 we can observe that there exists the linear relation between dp and
dq. This confirms our observation from Fig.7.

In the end of this phase, we can conclude that the baseline Euclidean distance for dp is
a good estimate. However, only for the small distances in the simplest case (i.e. without
noise, shift, etc.).

11



Figure 8: The dq values on the x-axis and dp values on the y-axis. The plot resents the
ratio dp

dq
of 5 closest distance pairs calculated for every projection image.

Testing different penalizations for small and large distances The next step for
this phase was to run the angle recovery with the assumption of dp being the Euclidean
distance between two projection images. The settings were following:

• Number of steps: 10K

• Optimizer: Adam (gradient-based optimization)

• Learning rate: 0.001

• Number of projections: 5K

• Angle coverage: half-sphere

• Sampling: half closest knn projection image pairs + half random projection image
pairs

The result we got is the loss 2.20 and the sphere coverage can be seen in Fig.9. We can
observe that the projection images in Euler angle space are concentrating in one place.
This concentration happens due to the large distances not being well estimated.
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Figure 9: The sphere coverage after the angle recovery optimization in where the dp is
assumed to be the Euclidean distance.

3.3 Phase 2.2: Distance Estimation with the Siamese Neural Net-
work

In this experiment we train the Siamese Neural Network to find the perfect distance metric
dp. We expect to have a linear dependence between dp and dq outputs (i.e. dp(pi, pj) =
C·dq(qi, qj)). Ideally, we expect the input parameters of the dp method to be two projection
images and the output to be be their distance in the quaternion space (C = 1).

The architecture of implemented Siamese Neural Network can be seen in Fig.10. We
can see the two twin sub-networks with the same layers on the left and the right side of
the figure. The left side of the network accepts the first element of the distance pair as
an input and the right side accepts the second element of the distance pair as an input.
The last layer unites these two sub-networks and outputs the single value that represents
the Euclidean distance between the feature vectors received for each of the sub-network.
The output of the last layer (i.e. the Euclidean layer) represents the similarity measure
between the two projection images. In our case, this similarity measure represents the
distance in the embedding space between two input projection images.

The settings for training the SiameseNN were: 500 epochs with 60K training distance
pairs, 20K test distance pairs, and 20K validation distance pairs. Training, test, and
validation sets were creating using the disjoint sets of projection images (i.e. since we have
5K projection images, 3K projection images were used to create 60K training distance
pairs, 1K projection images were used for test and validation sets each). The performance
of SiameseNN training can be seen in Fig.11.

The ratio between dp and dq can be seen in Fig.12. We can see that the SiameseNN
managed to learn the linear dependence with C = 1.

After seeing that the SiameseNN performs quite good, we continued with the angle
recovery optimization. Before the angle recovery, the loss between ground truth angles
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Figure 10: Architecture of the Siamese Neural Network.

and the estimated ones is 1.097 (calculated using the equation 7). The loss for angle
recovery using the output of SiameseNN as distance metric dp was 8.37e-01. The loss
between ground truth angles and the estimated ones is 1.0054.

The sphere coverage of 10 (true vs. predicted) projection images’ embeddings can be
seen in Fig.13. We can see that the angle recovery is not performing as well as expected.
The possible areas of improvement could be the modification of the SiameseNN’s model
layers as well as modifying the loss function for the angle recovery.
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Figure 11: Training and validation losses of SiameseNN. Left plot shows the MSE and
the right plot shows the MAE error w.r.t. epoch.

Figure 12: Ratio between dp and dq. The red dots represent the training set and blue
dots represent validation data. The back line is the line f(x) = x.

Angle Estimation Error Metric In order to better understand how far is the esti-
mated result from the optimal result, we are introducing the mean average angle estima-
tion error under the best global alignment:

R̂ = argmin
R

1

N

N∑
i=1

|dq(qi, Rq̂i)| (8)

where dq is the quaternion distance between qi and Rq̂i; qi is the true quaternion; q̂i is
estimated quaternion; R is a quaternion representing a global rotation which best aligns
the two sets of quaternions. The estimated quaternions are globally rotated as Rq̂i where
the multiplication of the two quaternions is the composition of the two rotations they
represent.

The general rotation R would rotate all the estimated quaternions in order to minimize
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Figure 13: The sphere coverage of 10 predicted vs. true projection image embeddings in
the Euler angle space. The red dots are true angles and the green dots are the estimated
angles. The lines connecting them are their distances

the average distance between the true quaternions and estimated quaternions rotated
using the rotation quaternion R.

The initial rotation around Z − Y −Z axes are the following three rotation angles (0,
0, 0). The initial loss value is 1.871 calculated using the equation 8. After running the
optimization, the values of rotation angles are (1.48, 0.006, 1.36) and the calculated loss
is 1.86. In other words, this is around 106.5 degrees of difference between the estimated
rotated angles’ distances and the true ones. This value is very high if we take into the
account the fact that we would like the accept the solution that has difference at most 10
degrees.

Angle recovery with true angles initialization Previously, we initialized our esti-
mated angles with random uniformly distributed angle values in every axis Z − Y − Z.
We wondered how would the angle recovery perform depending on the initialization of
estimated angles. We put them to be the true (correct) angles.

initialization GT loss before AR loss GT loss after R loss before (deg) R loss after (deg) GT loss final
random angles 1.0971 8.37e-01 1.005 1.871 (107.2◦) 1.867 (106.5◦) 1.0075
true angles 0.0 8.30e-01 0.324 0.186 (10.66◦) 0.188 (10.77◦) 0.324

Table 1: Losses depending on the initialization of estimated angles; GT loss = ground
truth loss (calculated with the equation 7); R loss = rotation loss (calculated with the
equation 8); AR loss = angle recovery loss (calculated with the equation 6).

In Table 1 we can see the performance of angle recovery with true angles compared to
the random angle initialization. The ground truth loss after the angle recovery decreased
when the estimated angles are initialized randomly. However, if they are initialized with
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true angles, we can see the increase in loss after the angle recovery (by 0.32). The rotation
loss decreases by 0.7◦. The ground truth loss increases slightly (0.002) but it is still better
than it was in the beginning (1.097). The rotation loss in true angles initialization slightly
increases after the global rotation (by 0.1◦). Even so, the rotation loss is very good ( 10◦)
with the true angle initialization.

We are still left with some crucial questions like: Why the angle recovery loss seems
to be very similar in both cases? Why does ground truth loss increase after the angle
recovery in case of true angle initialization? We hope to answer them in the work that
will follow.
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4 Discussion
Overall, the main difficulty of our project presently is to recover the angles with an
approximate distance estimation. We have three scenarios:

• Using the true distance as a distance metric dp (see section 3.1). We saw that the
angle recovery works perfectly. Knowing this, we concluded that finding the perfect
distance metric using the Siamese Neural Network has the high potential to work.

• Using the Euclidean distance as a distance metric dp (see section 3.2). We saw in
Fig.7 and Fig.8 that the Euclidean distance is only good for small distances. After
testing different penalizations (see section 3.2) we could not make the angle recovery
work.

• Using the learned distance metric dp. This distance metric was learned using the
Siamese Neural Network (see section 3.3). We managed to learn the (almost) perfect
distance metric. It performs well (the optimization losses decrease), however the
angle estimation is still noisy. We can say that it partially works and there is still
place for improvements.

In this project we worked with the two proteins called 5a1a4 (protein with symmetries)
and 5j0n5 (asymmetric protein).

4.1 Future Work

The stages of the project development are the following:

1. Testing the feasibility of the algorithms as well as the whole pipeline. In this stage
we are only using one protein 3D volume x. The set of projections is created using
the projection Pθi along the 3D pose θi. We do not consider the effects of noise,
shift, etc. (see the full equation 1). The 2D projection set {yi} is then split into
disjoint training {ytraini } and test {ytesti } sets.
x→ {yi} = {Pθix} =⇒ {ytraini } ∪ {ytesti } = {yi} ∧ {ytraini } ∩ {ytesti } = ∅

2. Testing the robustness to noise n. This stage presents the extension of the
previous stage. Same as before, we are only using one protein 3D volume x and the
set of projections is created using the projection Pθi along the 3D pose θi. Here we
include the noise n to crate the set of 2D projections {yi}. The 2D projection set
{yi} is then split into disjoint training {ytraini } and test {ytesti } sets.
x→ {yi} = {Pθix+ n} =⇒ {ytraini } ∪ {ytesti } = {yi} ∧ {ytraini } ∩ {ytesti } = ∅

3. Testing the robustness to unseen protein volumes. In this stage, we have
N protein 3D volumes that are used to create the training set of 2D projections
{ytrainN,i }. Another, unseen protein 3D volume xtest is used to create the test set of
2D projections {ytesti }. The set of projections is created using the projection Pθi

along the 3D pose θi. We do not consider the effects of noise, shift, etc.

{xtrain1 , ...,xtrainN } → {ytrainN,i } = {Pθix
train
N }

xtest → {ytesti } = {Pθix
test}

4https://www.rcsb.org/structure/5A1A
5https://www.rcsb.org/structure/5J0N
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4. Testing the faithfulness of Hφ. We are only using one protein 3D volume x and
the set of projections is created using the projection Pθi along the 3D pose θi as
well as all the other operators (noise n, CTF Cϕ, shift St) specified in the equation
1. The 2D projection set {yi} is then split into disjoint training {ytraini } and test
{ytesti } sets.
x → {yi} = {CϕStPθix + n} = {Hφx + n} =⇒ {ytraini } ∪ {ytesti } = {yi} ∧
{ytraini } ∩ {ytesti } = ∅

5. Final goal. We have N protein 3D volumes that are used to create the training
set of 2D projections {ytrainN,i }. Another, unseen protein 3D volume xtest is used to
create the test set of 2D projections {ytesti }. The set of projections is created using
the projection Pθi along the 3D pose θi as well as all the other operators (noise n,
CTF Cϕ, shift St) specified in the equation 1.

{xtrain1 , ...,xtrainN } → {ytrainN,i } = {CϕStPθix
train
N + n}

xtest → {ytesti } = {CϕStPθix
test + n}

In this project we only covered the stage 1. Other stages can be considered to be the
future work. In addition to these stages, the following things could be improved:

• Improve the Siamese Neural Network model by adding more complexity (i.e. mod-
ifying the existing layers and adding the new layers). The performance can be
compared using the results seen in the Fig.11. The goal would be to decrease the
difference between training and validation losses.

• The current implementation of Siamese Neural Network unites the two twin CNN
networks using the predefined metric - Euclidean distance metric. We might consider
implementing the learned metrics - nonlinear distance metric.

• Add the last step done after the angle recovery, called protein reconstruction. The
protein reconstruction uses already developed advanced algorithms that reconstructs
the 3D volume given the protein 2D projection images and their corresponding
rotation angles.

• Run the angle recovery with estimated angles that are initialized with true angles
+ 5◦, 10◦, etc. difference. Observe the results and compare the performance with
random angles initialization.
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5 Conclusion
The challenge of the project was to learn a pairwise projection distances in order to recover
the angles at which the 2D projection of the 3D protein volume was taken from.

Exploring different results, we learned how different assumptions and setups affect the
performance of the pipeline. The first biggest challenges was to find the perfect distance
metric between two projection images. The latest implementation of the pipeline includes
learning the distance metric using the Siamese Neural Network since we are not able
to create the distance metric with the desired invariants manually. The second biggest
challenge was to recover the angles from these learned distances.

In the end, we successfully managed to run the pipeline and observe the positive results
regarding the feasibility of the proposed approaches. However, there is a lot of space for
future improvements in the pipeline.
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6 Appendix
The conversion depends on the sequence of rotation axes. There exist twelve possible
sequences of rotation axes, divided in two groups: (1) proper Euler angles and (2) Tait-
Bryan angles6.

In our project, we are dealing with the sequence of rotation axes Z − Y − Z that
belongs to the proper Euler angles group. The TensorFlow7 package implements the
quaternions class. However, the quaternion-Euler angle conversion only supports the
Tait-Bryan angles (sequence of rotations around Z−Y −X axes). Thus we implemented
the conversion in TensorFlow that supports our sequence of the rotation axes.

Euler angle to quaternion conversion Let’s assume that α, β, and γ are the rotation
angles around the Z − Y − Z axes respectively. In order to convert it to the quaternion,
we use following equations:

c1 = cos(
α

2
); c2 = cos(

β

2
); c3 = cos(

γ

2
); (9)

s1 = sin(
α

2
); s2 = sin(

β

2
); s3 = sin(

γ

2
) (10)

w = c1c2c3 − s1c2s3 (11)
x = c1s2s3 − s1s2c3 (12)
y = c1s2c3 + s1s2s3 (13)
z = c1c2s3 + s1c2c3 (14)

. Calculating the w, x, y, and z values and incorporating them in the equation 2, we get
the quaternion representation.

Quaternion to Euler angle conversion Let’s assume that we have the w, x, y, and z
parts of the quaternion. In order to convert it to the rotation angles around the Z−Y −Z
axes, we use the following equations:

R =

r00 r01 r02
r10 r11 r12
r20 r21 r22

 =

1− 2(y2 + z2) 2(xy − wz) 2(xz + wy)
2(xy + wz) 1− 2(x2 + z2) 2(yz + wx)
2(xz + wy) 2(yz − wx) 1− 2(x2 + y2)

 (15)

To factor M =

a00 a01 a02
a10 a11 a12
a20 a21 a22

 that belongs to SO(3)8 into a sequaence of principal

factors in the Euler angle Z − Y − Z rotation convention RZ(α)RY (β)RZ(γ), we expand
the sequence by multiplying the corresponding matrix forms (equation 1.15 in [13]). The
resulting matrix is:

6https://en.wikipedia.org/wiki/Euler_angles
7https://www.tensorflow.org/
8https://en.wikipedia.org/wiki/3D_rotation_group
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RZ(α)RY (β)RZ(γ) =cos(β)cos(α)cos(γ)− sin(α)sin(γ) −cos(γ)sin(α)− cos(β)cos(α)sin(γ) sin(β)cos(α)
cos(β)cos(γ)sin(α) + cos(α)sin(γ) cos(α)cos(γ)− cos(β)sin(α)sin(γ) sin(β)sin(α)

−sin(β)cos(γ) sin(β)sin(γ) cos(β)


Matching the elements of this matrix RZ(α)RY (β)RZ(γ) to those of M , we find that:

a22 = cos(β) (16)
a21

(−a20)
= tan(γ) (17)

a12
a02

= tan(α) (18)

We also need to take the gimbal lock into an account [13]. The gimbal lock refers to
a gyroscope having three nested gimbals to provide three degrees of rotational freedom.
There exist critical angles for the middle gimbal that reduces the rotational degrees of
freedom from three to two. In these critical configurations, the gimbals lie in a single
plane and rotation in that plane is locked out by gimble mechanism. This loss of degree
is a gimbal lock. In the Table 2, all three degrees of freedom are available when β 6= 0
and β 6= π (i.e. a22 6= ±1). We have only two degrees of freedom when β = 0 or β = π
(i.e. a22 = −1 or a22 = +1). The consecutive rotations collapse down to a single principal
rotation:

β = 0 : RZ(α)RY (0)RZ(γ) = RZ(α)RZ(γ) = RZ(α + γ) (19)
β = π : RZ(α)RY (π)RZ(γ) = RZ(α)RZ(−γ) = RZ(α− γ) (20)

All these equations lead to the solution in Table 2 based on value a22:

Case Principal factors for rotation RZ(α)RY (β)RZ(γ)
(all angles modulo 2π)

a22 6= ±1

β = arccos(a22)
[principal value]

0 < β < π
α = arctan2(a12, a02) γ = arctan2(a21,−a20)

β = arccos(a22)
[2π - principal value]

π < β < 2π
α = arctan2(−a12,−a02) γ = arctan2(−a21, a20)

a22 = −1 β = π α = arctan2(a10, a11) + γ any value of γ
a22 = +1 β = 0 α = arctan2(a10, a11)− γ any value of α

Table 2: Principal factors for Z − Y − Z rotation.

Calculation of the angles α, β, and γ above was made possible thanks to the paper
[13].
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