
Movinder: A Movie Recommendation System for
Groups

Jelena Banjac
jelena.banjac@epfl.ch

Can Yilmaz Altinigne
can.altinigne@epfl.ch

Sofia Kypraiou
sofia.kypraiou@epfl.ch

Panagiotis Sioulas
panagiotis.sioulas@epfl.ch

ABSTRACT
Using the wealth of data available on user preferences, re-
searchers and online streaming companies have extensively
researched and deployed movie recommender systems. Most
recommendation algorithms process the preferences of each
user, and potentially those of other similar users, to predict
other movies they might like. However, watching movies is
often a social activity shared by multiple actors, such as a
group of friends. The social dimension of watching movies
contradicts common approaches that strive to satisfy one
user at a time. In this project, we analyse different implemen-
tations of a movie recommender system that aims to maxi-
mize the collective satisfaction of a group of users. Using the
combination of Movielens and IMDb datasets, we simulate
the group of friends to train our recommender models. The
recommender models implemented and discussed include
the following types of networks: Neural Collaborative Fil-
tering (NCF), Neural Graph Collaborative Filtering (NGCF),
Siamese Neural Network (SNN) and LightFMmodels. The ob-
tained results are compared. The fastest models are deployed
to the website, whereas other models with higher accuracy
can be found in the notebooks due to higher computation
time. The link to the repository: https://github.com/Movinder.

KEYWORDS
recommendation system, graph, neural networks, nearest

neighbors
.

1 INTRODUCTION
The concept of recommendations is intertwined with the
history of art, tracing back to antiquity in the form of liter-
ary criticism. Yet, the recent proliferation of the World Wide
Web has brought unprecedented challenges and opportu-
nities to effective recommendations. On the one hand, the
abundance of multimedia has increased the need for accurate

EPFL, January 2020, Lausanne, Switzerland
© 2020

recommendations to allow users to be time-efficient. On the
other hand, users produce a wealth of data on their prefer-
ences which can be used to personalize recommendations.
As a result, recommender systems have been the subject of
extensive body of academic and industrial research.
Movie recommendations are a particularly popular topic

in the area of recommender systems. Web-based movie rec-
ommender systems are an established type of service, with
ventures such as MovieLens dating as early as 1997. The
rise of online streaming companies has further fueled the
attention to the problem. The stunning one million dollar
reward in the Netflix Prize competition in 2009 is a testament
to the significance of movie recommendations.

In the background,most algorithms ofmovie recommender
systems consider user preferences in conjunction with movie
similarity. The preference data is sparse because users only
rate a small subset of the available movies. For this reason,
many algorithms use collaborative filtering to include the
preferences of other similar users to the recommendation.
However, the recommendation still concerns only a single
user. By contrast, watching movies is in many cases a so-
cial event in which people participate as groups (i.e. friends,
couples, associates). Members of the group obviously have
different preferences. In this context, the single-user person-
alized recommendation is unsatisfactory.

In this project, we propose a multi-user recommender sys-
tem. The per-user preference predictions are then aggregated
to produce a prediction for the collective satisfaction of the
group.

To validate our approach, we use publicly available datasets
on movie ratings and movie characteristics. Specifically, we
use the MovieLens dataset1, which contains 100000 ratings
from 943 users on 1682 movies. We merge it with the IMDb
dataset2 which contains information on the cast, the produc-
tion movies and the related-keywords for each movie. We
use the combined features of the two datasets to generate
the movie graph that our algorithm requires.

1https://grouplens.org/datasets/movielens/
2https://datasets.imdbws.com/

EPFL, January 2020, Lausanne, Switzerland J. Banjac, C. Y. Altinigne, S. Kypraiou, P. Sioulas

The layout of the report is as follows. In Section 2 we
describe our data acquisition process, whereas in Section 3,
we explore the collected data. In Section 4, we examine our
recommendation algorithm and propose different aggrega-
tion methods. Finally, in Section 5, we evaluate our system
and we summarize our insights in Section 6.

2 DATA ACQUISITION
The core dataset that we use is the MovieLens dataset. The
dataset contains 100000 ratings from 943 users on 1682movies.
Each user in the dataset has rated at least 20 movies. User
entries also include demographic information, specifically
the age, the gender, the occupation and the zip code. The
dataset provider has also annotated each movie with a list of
genres. The 19 genres are represented using a bit-encoded
vector. Each of the movies also have a composite text that
concatenates the name with the year of release. We unpack
the information.

TheMovieLens dataset contains limited information about
the movies, making it difficult to construct an accurate sim-
ilarity graph. For this reason, we enrich movie entries us-
ing information extracted from IMDb. IMDb stores addi-
tional information including keywords, cast members and
production companies. More precisely, it contains 134170
keywords, 4167491 cast members and 234997 companies. We
first convert IMDb to a relational database using imdbpy.
Then, we perform data integration by performing a join
on the movie name and year of release information. Some
MovieLens movies have a distorted name format. For ex-
ample, articles are places after the rest of the name. Also,
international movies have the original title inside paren-
theses. We use rule-based data cleaning to merge the data
and associate MovieLens movie identifiers with IMDb movie
identifiers.

3 DATA ANALYSIS
We use the vector representation of the movie entries to
build a similarity graph. We compute similarity as the cosine
similarity metric:

sim(v1,v2) =
v1 · v2

| |v1 | | · | |v2 | |

for feature vectorsv1,v2. For performance, we normalize the
feature vectors and compute similarity as the dot product.

We consider the similarity matrix which is the foundation
of the similarity graph. In Figure 1, we plot the histogram
of the values in the similarity matrix, excluding zeroes. We
observe that the vast majority of similarity values is less
than 0.2. Even so, the matrix is not sparse as 61.29% of the
values is non-zero. A minority of the values is also high
which correspond to very similar movies.

To produce the movie graph, we sparsify the similarity
matrix by setting a threshold of 0.1. All the values below that
are set to zero. We plot the histogram of the values for the
sparsified similarity matrix in Figure 2, excluding zeroes. At
first, we considered setting the threshold to 0.2 because it
seems to be the rightmost point of the concentration of small
similarity values. However, the resulting graph is very sparse
and contains 815 nodes without neighbors. By contrast, a
value of 0.1 yields only 22 such nodes. The fraction of non-
zero values is 6.98 which means that the graph is relatively
sparse. Figure 3 shows the degrees of the similarity graph
that we build. The majority of nodes has a small degree, but
we notice that there exists a significant number of hubs with
more than 400 neighbors.

We also perform spectral analysis on the similarity graph
using the combinatorian Laplacian matrix. Figure 4 illus-
trates the eigenvalues of the combinatorial Laplacian. The
graph shows significant eigengaps near 1300. Additionally,
we perform spectral clustering with 250 clusters. We use
cosine distance because of the high number of dimensions.
However, since the k-means algorithm provided by sklearn
only supports euclidean distance, we normalize the embed-
ded values. The euclidean distance of normalized vectors
is linear to cosine distance. Some clusters are reasonable,
for example animations (Snow White, Aristocats, Cinderella,
Pinocchio and others) and war movies (Apocalypse Now,
Full Metal Jacket, Courage under Fire), and are clearly in-
terpretable. Unfortunately, other clusters either consist of
a single movie or contain unrelated movies. The latter case
usually occurs for very large clusters.

4 RECOMMENDATIONS
In this section, we present different movie recommendation
methods that we use.

4.1 Neural Collaborative Filtering
One of the models that we use for collaborative filtering is
Neural Collaborative Filtering implemented in [2]. The gen-
eral network combines Matrix Factorization and Multilayer
Perceptron to build a deep network structure named as Neu-
ral Matrix Factorization. In most recommendation systems,
the interaction between users and movies are modeled by
applying matrix factorization and then take the inner prod-
uct on the latent features of users and items. This framework
replaces the inner product with a neural architecture that
can learn an arbitrary function from data.

The network takes user and item embedding as inputs and
concatenates the outputs of matrix factorization branch and
Multilayer Perceptronwhich consists of several feed-forward
layers with ReLU activation functions. Output activation

Movinder: A Movie Recommendation System for Groups EPFL, January 2020, Lausanne, Switzerland

Figure 1: Histogram of values in similarity ma-
trix

Figure 2: Histogram of values in similarity
graph

Figure 3:Histogramof node degree in similarity
graph

Figure 4: Eigenvalues of similarity matrix

Figure 5: Model overview of Neural Collaborative Fil-
tering network [2].

function is Linear activation function, since we consider this
problem as a regression problem.

4.2 Neural Graph Collaborative Filtering
User-movie interactions can be presented in a bipartite graph.
In Neural Collaborative Filtering [2], the interaction between
users and movies is not considered. In Neural Graph Col-
laborative Filtering, high-order connectivity is modeled by a
graph neural network [5].

For example, the model considers the interaction between
the target user and the other users who like the movies that

Figure 6: Model overview of Neural Collaborative Fil-
tering network [5].

the target user likes. The number of multiple embedding
layers can be increased to obtain higher-order connectivity.

4.3 Siamese Neural Network
To create friends similarity graph, we use group of friends
and their features as nodes and features similarity as edges.
However, the feature similarity is unknown. For that, we
decided to use Siamese Neural Network [1]. The inputs to
the our network are: friends, positively rated movies (rating

EPFL, January 2020, Lausanne, Switzerland J. Banjac, C. Y. Altinigne, S. Kypraiou, P. Sioulas

above 3), and negatively rated movies (rating bellow 4). The
positively and negatively rated movies use the same weights,
thus we have a Siamese architecture that will give us the
single embedding for the movies. Last layer of the network is
the triplet loss based on the Bayesian Personalized Ranking
(BPR) [4]:

LBPR (a,p,n) =
∑

1 − σ (f (a,p) − f (a,n))

where a is an anchor observation, p is the positive sample
which should be closer to a than the negative samplen, and σ
is the sigmoid function. The function f is the transformation
we want to learn, and ϵ is a tuning parameter (ϵ > 0). The
learned metric should separate the negative sample n from
the positive sample p at least by a positive margin ϵ .

4.4 LightFM
LightFM3 is Python implementation of a number of popular
recommendation algorithms for both implicit and explicit
feedback, including implementation of Bayesian Personal-
ized Ranking (BPR) and Weighted Approximate-Rank Pair-
wise (WARP) ranking losses. In its essence, it presents a
hybrid matrix factorisation model. We decided to use it since
it outperforms collaborative and content-based models as
well as sparse interaction data scenarios, as tested in the
paper [3] that provides much more implementation details.

5 EXPERIMENTS
We will present several experiments with different models
in this section.

5.1 Collaborative Filtering with Deep
Learning

We compare Neural Collaborative Filtering [2] and Neural
Graph Collaborative Filtering [5] using user and item embed-
dings with the size of 64.

Figure 7: Test set performance of NCF [2] and NGCF
[5].

3http://lyst.github.io/lightfm/docs/home.html

We did training/validation/test split using 0.6:0.2:0.2 ratio.
We perform grid search to choose the best hyperparameters.
We use Adam optimizer with MAE loss function for both
models. Both models have Linear output activation function.
NGCF [5] model achieves 0.72MAE in test set, whereas NCF
[2] achieves 0.764 MAE.

5.2 Siamese Neural Network
We start by binarizing the user ratings that are given in range
between 1 and 5. The ratings above 3 are the interacting
friends-movie pairs, and ratings bellow 4 are non-interacting
friends-movie pairs (i.e. creating an implicit feedback data).
To construct the triplets a,p,n, we sample from the interact-
ing friends-movies pairs and combine them with randomly
sampled non-interaction items for the friends.

Figure 8: The architecture of implemented Siamese
neural network

The model architecture can be seen in Figure ??. We can
see that the dense embeddings of friends and movies are
the input to the triplet loss function. By minimizing it, we
achieve our goal: learning friends representations and movie
representations in embedded space.

The performance evaluation of the implemented Siamese
neural network is shown in Figure 9

Figure 9: Left plot shows the loss of training the
Siamese model. Right plot shows the accuracy on
training and test sets.

In the end we have a 94.5% of accuracy on the train set
and 91.1% of accuracy on the test set.

Movinder: A Movie Recommendation System for Groups EPFL, January 2020, Lausanne, Switzerland

5.3 LightFM
We train our model using the movie and friends dataset fea-
tures. We crate the sparse matrices in order to feed our model
for training. First, we build ID mappings between the friends
and movie ids from our datasets to indices that will be used
internally by the model. Then, we crate the interactions ma-
trix that contains interactions between friends and movies
(1 if friend rated the movie, 0 otherwise). In addition, we col-
lect friend’s features (i.e. their age and gender) and movie’s
features (i.e. genres, titles, release, genres, and vectorized
keywords, cast and company information) and supply it to
the model. Building a model included the tuning of following
hyper-parameters: number of epochs used, learning rate for
the adagrad learning schedule, maximum number of nega-
tive samples used during the WARP fitting. We used WARP
ranking loss since it was working significantly faster than
BPR ranking loss. We also compared the performance of
model depending on whether we use additional movie’s and
friend’s features or not. Final used parameters were:

• Number of epochs: 150
• Learning rate: 0.015
• Maximum number of negative samples: 11
• Ranking loss: WARP.

The resulting precision of the model is 83% on the training
set and 68% on the test set. The resulting accuracy is 87% on
the training set and 88% on the test set.

5.3.1 Friends graph representation. From the model, we ex-
tract the user embeddings which are represented as a 10-
dimensional vector for each group of friends. To plot friends
similarity graph, need an adjacency matrix and friends em-
bedding coordinates in 2D space. The adjacency matrix was
calculated using the cosine similarity. The friends embedding
dimension was reduced from 10D to 2D using different tech-
niques of dimensionality reduction, including TSNE which
can be seen in Figure 10.

5.3.2 Movie graph representation. Similar to the friends graph
represenation, we extract the movie embeddings which are
represented as a 10-dimensional vector for each movie. To
plot a movie similarity graph, need an adjacency matrix and
movie embedding coordinates in 2D space. The adjacency
matrix was calculated using the cosine similarity. The movie
embedding dimension was reduced from 10D to 2D using
different techniques of dimensionality reduction, the TSNE
can be seen in Figure 11.

6 CONCLUSIONS
We observe that Graph Neural Network model reaches a
better test set error than Neural Network structure on movie
recommendation task, since it captures the collaborative sig-
nal between user and movies on a bipartite graph structure.

Figure 10: Friends graph embedded in 2D space us-
ing the TSNE dimensionality reduction method. In to-
tal we have 184 groups of friends each representing
the node. The edges are thresholded similarity values
(threshold=0.88)

Figure 11: Movie graph embedded in 2D space using
the TSNE dimensionality reduction method. In total
we have 1251 different movies. To plot it, we selected
random 281 movies where each represents the node.
The edges are thresholded similarity values (thresh-
old=0.9)

Moreover, we decide to use our two fastest implementa-
tions of movie recommendation which are General Matrix
factorization and LightFM implementations on a website to
recommend movie to group of users.

The product of this project was implemented as a web ap-
plication on the following link: https://movinder.herokuapp.com/.
More details on the implementation as well as other visual-
izations can be found in our github repository:
https://github.com/Movinder.

REFERENCES
[1] Miguel Campo, JJ Espinoza, Julie Rieger, and Abhinav Taliyan. 2018.

Collaborative Metric Learning Recommendation System: Application

EPFL, January 2020, Lausanne, Switzerland J. Banjac, C. Y. Altinigne, S. Kypraiou, P. Sioulas

to Theatrical Movie Releases. arXiv:cs.IR/1803.00202
[2] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and

Tat-Seng Chua. 2017. Neural Collaborative Filtering. Proceedings of the
26th International Conference on World Wide Web - WWW ’17 (2017).
https://doi.org/10.1145/3038912.3052569

[3] Maciej Kula. 2015. Metadata Embeddings for User and Item Cold-
start Recommendations. In Proceedings of the 2nd Workshop on New
Trends on Content-Based Recommender Systems co-located with 9th ACM
Conference on Recommender Systems (RecSys 2015), Vienna, Austria,
September 16-20, 2015. (CEUR Workshop Proceedings), Toine Bogers and
Marijn Koolen (Eds.), Vol. 1448. CEUR-WS.org, 14–21. http://ceur-

ws.org/Vol-1448/paper4.pdf
[4] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars

Schmidt-Thieme. 2012. BPR: Bayesian Personalized Ranking from Im-
plicit Feedback. CoRR abs/1205.2618 (2012). arXiv:1205.2618 http:
//arxiv.org/abs/1205.2618

[5] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua.
2019. Neural Graph Collaborative Filtering. Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in
Information Retrieval - SIGIR’19 (2019). https://doi.org/10.1145/3331184.
3331267

http://arxiv.org/abs/cs.IR/1803.00202
https://doi.org/10.1145/3038912.3052569
http://ceur-ws.org/Vol-1448/paper4.pdf
http://ceur-ws.org/Vol-1448/paper4.pdf
http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1205.2618
http://arxiv.org/abs/1205.2618
https://doi.org/10.1145/3331184.3331267
https://doi.org/10.1145/3331184.3331267

	Abstract
	1 Introduction
	2 Data Acquisition
	3 Data Analysis
	4 Recommendations
	4.1 Neural Collaborative Filtering
	4.2 Neural Graph Collaborative Filtering
	4.3 Siamese Neural Network
	4.4 LightFM

	5 Experiments
	5.1 Collaborative Filtering with Deep Learning
	5.2 Siamese Neural Network
	5.3 LightFM

	6 Conclusions
	References

